The use of (NN) for Fingerprint Recognition

3. THE USE OF NEURAL NETWORK FOR FINGERPrint RECOGNITION
3.1 Overview

 This chapter presents an overview to neural networks. Mathematical model of neural network and its larning algorithms are given. The back-propagation learning algorithm that was used for fingerprint recognition is described. The structure of the neural system used for fingerprint recognition is presented.
3.2 Neural Networks
An Artificial Neural Network (ANN) is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. [10]
An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurons. This is true of ANNs as well.
Definition:
 A machine that is designed to model the way in which the brain preference a particular taste or function. The neural network is usually implemented using electronic components or simulated as software. [11]
Simulated:
 A neural network is a massive, parallel-distributed processor that has a natural propensity for storing experiential knowledge and making it available for use.
It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths, known as synaptic weights are used to store the knowledge.
A neural network is a system composed of many simple processing elements operating in parallel whose function is determined by network structure, connection strengths, and the processing performed at computing elements or nodes.
A neural network is a computational model that shares some of the properties of the brain. It consists of many simple units working in parallel with no central control; the connections between units have numeric weights that can be modified by the learning element.

Neural networks go by many aliases. Although by no means synonyms the names listed in figure 3.1 below.
[image: image1.wmf]ï

î

ï

í

ì

<

-

=

>

=

0

1

0

)

(

0

1

)

(

/

x

x

x

f

x

x

f

Figure 3.1 Neural Network Aliases
All refer to this new form of information processing; some of these terms again when we talk about implementations and models. In general though we will continue to use the words “neural networks” to mean the broad class of artificial neural systems, this appears to be the one most commonly used
3.3 Model of a Neuron
The neuron is the basic processor in neural networks. Each neuron has one output, which generally related to the state of the neuron its activation, which may fan out to several other neurons. Each neuron receives several inputs over these connections, called synapses. The inputs are the activations of the neuron.
[image: image21.wmf]functin

activation

thershold

function

sum

Q

S

[image: image22.wmf]functin

activation

thershold

function

adder

Q

S

Figure 4. Diagram of Abstract Neuron Model. [10]
This is computed by applying a threshold function to this product. An abstract model of the neuron is shown in figure 3.2.

3.4 Activation Functions
This activation function is generally some form of nonlinear function. One simple nonlinear function that is appropriate for discrete neural nets is the step function. One variant of the step function is:

Figure 3.3 Hard Activation Function

[image: image23.png]

 (3.1)

Where
[image: image2.wmf]f

¢

(x) refers to the previous value of f(x) (that is the activation of the neuron will not change) where x is the summation (over all the incoming neurons) of the product of the incoming neuron’s activation, and the connection:

[image: image3.wmf]å

=

=

n

i

i

i

w

A

X

0

 (3.2)

X is the number of incoming neurons, A is the vector of incoming neurons and w is the vector of synaptic weights connecting the incoming neurons to the neurons that are examining. Another activation function appropriate to analog neural network is the sigmoid, or squashing, function; an example is the logistic function illustrated in figure 3.4. [12]

Figure 3.4 Sigmoid Function

[image: image4.wmf](

)

x

e

x

f

-

+

=

1

1

 (3.3)

Another popular alternative is:

[image: image5.wmf](

)

(

)

x

x

f

tanh

=

 (3.4)
The most important characteristic of the activation function used here is that it is nonlinear. If the activation function is used as a multiplayer network, the activation function must be nonlinear, or the computational will be equivalent to a single-layer network.
3.5 Back-Propagation
The most popular method for learning in the multiplayer network is called “back-propagation.” It was first invented in 1996 by Bryson, but was more or less ignored until the mid-1980s. The reason for this may be sociological, but may also have to do with the computational requirements of the algorithm on nontrivial problems. [13]
The back-propagation learning algorithm works on multiplayer feed-forward networks, using gradient descent in weight space to minimize the output error. It converges to a locally optimal solution, and has been used with some success in a variety of applications. As with all hill-climbing techniques, however, there is no guarantee that it will find a global solution.
3.5.1 Back-Propagation Learning
Suppose that we try a two-layer network, and there are ten attributes describing each example, so ten input units are needed. In figure 3.5, a network with four hidden is shown.

Figure 3.5 A two layer feed forward network.
Example inputs are presented to the network, and if the network computes an output vector that matches the target, nothing is done. If there is an error (a difference between the output and target), then weights are adjusted to reduce this error. The trick is to assess the blame for an error and divide it among the contributing weights. In Perceptrons, this is easy, because there is only one weight connecting each input and output. But in multiplayer networks, there are many weights connecting each input to an output and each of these weights contributes to more than one output. [13]
The back-propagation algorithm is a sensible approach to dividing the contribution of each weight. As in the Perceptron Learning Algorithm, the error between each target output and the output actually computed by the network is minimized. At the output layer the weight update rule is very similar to the rule for the perceptron. However, there are two differences. The activation of the hidden unit aj is used instead of the input value; and the rule contains a term for the gradient of the activation function. If Erri is the error (Ti-Oi) at the output node, then the weight update rule for the link from unit j to unit i is

[image: image6.wmf])

(

i

i

ji

ji

in

g

Err

W

W

¢

´

´

+

¬

a

 (3.5)
Where
[image: image7.wmf]g

¢

the derivative of the activation g is will find it convenient to define a new error term
[image: image8.wmf]i

D

 which for output node is defined as
[image: image9.wmf])

(

i

i

i

in

g

Err

¢

=

D

. The update rule then becomes:

[image: image10.wmf]i

j

ji

ji

a

W

W

D

´

´

+

¬

a

 (3.6)
For updating the connections between the input and the hidden units, a quantity analogous to the error term for output node should be defined. The propagation rule so the following

[image: image11.wmf]å

D

¢

=

D

i

i

ji

j

j

W

in

g

)

(

 (3.7)
Now the weight update rule for the weights between the inputs and the hidden layer is almost identical to the update rule for the output layer.

[image: image12.wmf]j

k

kj

kj

I

W

W

D

´

´

+

¬

a

 (3.8)
Back-propagation provides a way of dividing the calculation of the gradient among the unit so the change in each weight can be calculated by the unit to which the weight is attached using only local information.

The sum of squared errors over the output values is used:

[image: image13.wmf]2

)

(

2

1

i

i

i

O

T

E

-

=

å

 (3.9)

The key insight again is that the output values Oi are a function of the weights for general two-layer network, we can write:

[image: image14.wmf]2

,

))

(

(

2

1

)

(

å

å

-

=

j

j

i

j

i

i

a

W

g

T

W

E

 (3.10)

[image: image15.wmf]2

,

,

))

)

(

(

(

2

1

)

(

å

å

å

-

=

j

k

j

k

i

j

i

i

I

W

g

W

g

T

W

E

 (3.11)
3.6 Learning Processes
Learning is a process by which the free parameters of a neural network are adapted through a process of stimulation by the environment in which the network is embedded. The type of learning is determined by a manner in which the parameter change takes place.
This definition of the learning process implies the following sequence of events:

· The neural network is stimulated by an environment.

· The neural network undergoes changes in its parameters as a result of this stimulation.

· The neural network responds in a new way to the environment because of the changes that have occurred in its internal structure.

A prescribed set of well-defined rules for the solution of a learning problem is called a “learning algorithm.”Basically learning algorithms differ from each other in the way in which the adjustment to a synaptic weight of neurons is formulated. Another factor to be considered is the manner in which a neural network (learning machine) is made up of a set of interconnected neurons. Learning paradigm refers to a model of the environment in whish the neural network operates. [10]

3.6.1 Neural Network Learning
All of the knowledge that a neural network possesses is stored in the synapses. The weights of the connections between the neurons are shown in the diagram (figure3.6) of the synapse layer model.

Figure 3.6 Diagram of Synapse Layer Model [14]
However the network acquires that knowledge, this happens during training of pattern. Associations are presented to the network in sequence, and the weights are adjusted to capture this knowledge.
The weight adjustment scheme is known as the “learning law”. One of the first learning methods formulated was Hebbian Learning.

Donald Hebb, in his organization of behavior formulated the concept of “correlation learning”. This is the idea that the weight of a connection is adjusted based on the values of the neurons its connects

[image: image16.wmf]j

i

ij

a

a

w

a

=

D

 (4.12)
Where
[image: image17.wmf]a

 is the learning rate ai is the activation of the ith neuron in one neuron layer, aj is the activation of the jth neuron in another layer, and wij is the connection strength between the two neurons.
A variant of this learning rule is the signal Hebbian Law:

[image: image18.wmf])

(

)

(

j

i

ij

ij

a

s

a

s

w

w

+

-

=

D

 (4.13)
S is a sigmoid

3.7 Learning Tasks
In this context, the learning tasks that apply to the use of neural network in one form or another are identified.

a. Pattern Association
An associative memory is a brain-like, distributed memory that learns by association. Association has been known to be a prominent feature of human memory since Aristotle and all models of cognition use in one form or another as the basic operation.
There are two phases involved in the operation of an associative memory:

· Storage phase, which refers to the training of the network in accordance with

[image: image19.wmf],

k

k

y

x

®

[image: image20.wmf]q

k

.....

3

,

2

,

1

=

· Recall phase, which involves the retrieval of a memorized pattern in response to the presentation of a noisy or distorted version of a key pattern to the network.
b. Fingerprint recognition

This section sketches the architecture of the finger verification system, which is organized in two main stages: training and verification, respectively. Compression networks, which are used, as essential components of both stages, are shortly described.
3.7.1 Compression Networks
An interesting aspect of back-propagation networks is that during learning process, the hidden layers build an internal representation of the inputs that is useful to produce the output [10]. Fleming and Cottrell used a two-stage neural network with the same number of neurons for input and output layers, and fewer units for the hidden layer.
This forces the network to encode the inputs in a smaller dimensional space retaining most of the relevant information in an equivalent way as the Principal Component Analysis (PCA) method. Valentin et al have investigated the application of compression networks to face recognition.
They have used the representation formed in the hidden neurons of this network as input to a single preceptor used as a classification network.
This means that these networks are able to acceptably reconstruct a degraded image pattern when a noise image is given as input or to complete an incomplete image input pattern.
The quality of the results will depend on the number of hidden units of the compression network [13].
This property is used in this work to precisely determine the position of each finger cutting resulting from the partition of an original test finger used during the verification stage.
3.7.2 Architecture of Proposed NN Based Fingerprint Verification System

Figure 3.7 presents the complete off--line finger verification. It is decomposed in two components or stages: learning and verification, respectively. To simplify the representation of the training stage, only the process corresponding to one writer (who originally signs once) has been drawn, which produces as result a trained compression.
This process is repeated for each one of the m writers, and in total, m corresponding trained compression networks network are generated.

Figure 3.7. The diagram of stages in the proposed finger verification method.
3.8 Summary

In this chapter the neural network model and its learning algorithms are described. Backpropagation learning algorithm is presented. The structure of neural network based fingerprint image recognition system is developed. Steps of fingerprint image processing have been explained.
Parallel distributed processing models

Connectivist /connectionism models

Adaptive systems

Self-organizing systems

Neurocomputing

Neuromorphic systems

� EMBED Equation.3 ���

Outgoing activation

A0

Synaptic weights

W0

W1

Wn

An

A1

Incoming Activation

� EMBED Equation.3 ���

Outgoing activation

A0

Incoming activations

Synaptic weights

W0

W1

Wn

An

A1

1

1-

1

Input units I k

Wk,j

Hidden units aj

Wj,i

Output units Oi

 y1 … yj … yn

 w11 w1j wi1 w1n w1ij win wm1 wmj wmn

 x1 . . . xi . . . 	 xm

Automatic training set generation

Training

Set of 10 fingers generated for image k

Input image finger of writer k (one perwriter)

Compression Network for finger k

Comparison

Results

Generation of positional cuttings

Test finger (supossed

to be of writer k)

Verification stage

Training stage

PAGE
43

_1080574615.unknown

_1080575084.unknown

_1134988237.unknown

_1134988512.unknown

_1286190382.unknown

_1080575289.unknown

_1080583591.unknown

_1080583737.unknown

_1080583218.unknown

_1080575275.unknown

_1080574741.unknown

_1080574818.unknown

_1080574698.unknown

_1080160440.unknown

_1080512613.unknown

_1080560739.unknown

_1080562275.unknown

_1080512662.unknown

_1080160965.unknown

_1080032830.unknown

_1080160300.unknown

_1080032399.unknown

